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Chimera states in networks of phase oscillators: The case of two small populations
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Chimera states are dynamical patterns in networks of coupled oscillators in which regions of synchronous and
asynchronous oscillation coexist. Although these states are typically observed in large ensembles of oscillators
and analyzed in the continuum limit, chimeras may also occur in systems with finite (and small) numbers of
oscillators. Focusing on networks of 2N phase oscillators that are organized in two groups, we find that chimera
states, corresponding to attracting periodic orbits, appear with as few as two oscillators per group and demonstrate
that for N > 2 the bifurcations that create them are analogous to those observed in the continuum limit. These
findings suggest that chimeras, which bear striking similarities to dynamical patterns in nature, are observable
and robust in small networks that are relevant to a variety of real-world systems.
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I. INTRODUCTION

Synchronization is an important feature of swarms of
fireflies [1], pedestrians on a footbridge [2], systems of
Josephson junctions [3], the power grid [4], oscillatory
chemical reactions [5], and cells in the heart and brain [6–8].
Since the pioneering work of Winfree [9] and Kuramoto [10],
mathematical models of arrays of coupled oscillators have
been used to gain insight into the origin of spontaneous
synchronization in a variety of different settings [11]. In
addition to uniform synchronous and asynchronous oscillation,
many networks of oscillators are known to exhibit a type of
partial synchronization known as a “chimera” state [12,13].

Chimera states are spatiotemporal patterns in which regions
of coherence and incoherence coexist [14]. These patterns have
been reported in analysis and simulation of coupled oscillators
with a variety of network topologies [12,14–23] and appear
to be robust to a variety of perturbations [24–28]. Recently,
they were also observed in experiments with optical [29],
chemical [30,31], mechanical [32], and electrochemical os-
cillators [33]. They bear a strong resemblence to patterns of
electrical activity in the human brain [34–37].

When they coined the term “chimera” state, Abrams
and Strogatz defined it as a state in which an array of
identical oscillators splits into domains of synchonized and
desynchronized oscillation. Recently Ashwin et al. formalized
this idea into a definition of a “weak chimera” [38] such that
one can prove the existence of, and investigate the stability and
bifurcation of, chimeralike solutions in small networks. For
our purposes, we will use the term “chimera state” to refer to
a trajectory in which two or more oscillators are synchronized
(in phase and frequency) and one or more oscillators drift in
phase and frequency with respect to the synchronized group;
these are weak chimeras with the additional restriction of phase
synchronization.

*panaggio@rose-hulman.edu

In nature oscillators often experience nonlocal interactions
with other oscillators that promote synchronization. It is
natural to model the dynamics on these networks using
finite systems of differential equations. In models like the
Kuramoto model, fully synchronized states can be understood
as stationary solutions in a rotating frame of reference.
Unfortunately, chimera states and other partially synchronized
solutions are more difficult to characterize due to fluctuations
in the local degree of synchrony, which is measured by an
order parameter. As a result, until recently [38,39], little
progress has been made in analyzing chimera states for finite
networks.

Instead, theoretical investigations of chimera states often
replace a finite network of oscillators (discrete) with an infinite
network (continuum) [14,17,18,40]. In the continuum limit,
the order parameter is stationary for a variety of synchronized
and desynchronized solutions, including chimera states. This
makes it possible to characterize chimera states by solving
an eigenvalue problem. Unfortunately, rigorous analysis of
the detailed dynamics and stability of chimera states remains
difficult, even in the continuum limit (it is possible in
certain lower-dimensional cases [40]). So researchers typically
discretize the theoretical solutions from the continuum limit
and assess the stability using numerical simulations with large
ensembles of oscillators. The implicit assumption is that these
two systems, one with an infinite number of oscillators and
the other with a finite number, should behave in similar ways.
However, at this time there is no rigorous justification for why
this would need to be the case. Although there is evidence that
this holds for certain coupling schemes [38], there are cases
where chimera states are stable in the continuum limit but not
when the number of oscillators is finite. For example, Wolfrum
and Omel’chenko [41] study a ring of oscillators with phases
θk described by

dθk

dt
= ω − 1

2R

k+R∑
j=k−R

sin(θk − θj + α) (1)
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for k = 1,2, . . . N , where N is the number of oscillators. For
finite N , and R proportional to N , they show that chimera states
are not attracting but instead appear as chaotic transients. This
means one can observe a period of chimeralike behavior for
certain initial conditions but the duration of this period is finite.
In large systems (N > 50) the observation of the collapse of a
chimera in simulation is extremely rare, but in small networks
(N < 25) the lifetime can be quite short. It is unknown to what
degree these observations apply to other topologies.

Here we explore a simple network with two groups of
oscillators. We show that in this network, the analogs of
chimera states need not be transients—they exist as stable
periodic orbits with as few as two oscillators per group.

II. TWO GROUPS OF N OSCILLATORS
FOR REDUCING N

We start with the system studied in Refs. [17,26,42,43]
consisting of two groups of N phase oscillators with
Kuramoto-Sakaguchi type coupling sin(ϕ + α) = cos(ϕ − β)
for β = π/2 − α. We assume an intergroup coupling strength
of ν = (1 − A)/2 and intragroup coupling μ = (1 + A)/2,
where 0 � A � 1; Fig. 1 illustrates such a network. Let {θi}Ni=1
and {φi}Ni=1 represent the phases of oscillators in groups 1
and 2, respectively. If all oscillators have the same natural
frequency ω, then their phases are governed by

dθi

dt
= ω −

(
1 + A

2N

) N∑
j=1

cos(θi − θj − β)

−
(

1 − A

2N

) N∑
j=1

cos(θi − φj − β), (2)

dφi

dt
= ω −

(
1 + A

2N

) N∑
j=1

cos(φi − φj − β)

−
(

1 − A

2N

) N∑
j=1

cos(φi − θj − β). (3)

Note that the A and β used here are the same as those in
Abrams et al. [17].

A. Dynamics and bifurcations for N = ∞
The dynamics of (2) and (3) were studied in the limit

N → ∞ in Ref. [17]. Summarizing, they use the Ott-Antonsen
ansatz [43,44] to derive a set of ordinary differential equations
(ODEs) satisfied by the complex order parameters for the two
groups of oscillators (which measure the degree of synchrony

ν

μ

μ

FIG. 1. Schematic diagram showing a network of 2N oscillators
in two groups of N coupled with strength μ within group and ν

between groups.
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FIG. 2. Bifurcations of chimeras in the continuum limit N = ∞
of (2) and (3). (A similar figure appears in Ref. [17].) The regions
between the red (dashed) and blue (solid) curves and between
the green (dash-dotted) and red (dashed) curves correspond to the
respective regions of existence for stationary and breathing chimeras.

within each group). A chimera state in our sense corresponds
to one group being perfectly synchronized (so the magnitude
of its order parameter |z| = | 1

N

∑N
j=1 eiθj | is equal to 1)

while oscillators in the other group are asynchronous (so the
magnitude of its order parameter satisfies 0 � |z| < 1). In
this case, Abrams et al. derive a pair of real ODEs for the
magnitude of the order parameter of the asynchronous group
and the difference in phases of the two order parameters.
Analyzing these equations on varying A and β, they obtain
the behavior shown in Fig. 2. For small β, as A is increased
from zero, two chimera states (one stable and one a saddle) are
created in a saddle-node bifurcation. As A increases the stable
chimera undergoes a supercritical Hopf bifurcation, leading
to a “breathing” chimera. Increasing A further results in this
solution colliding with the saddle chimera in a homoclinic
bifurcation, and no stable chimeras remain.

B. Dynamics for finite N

Generating initial conditions consistent with the stationary
chimera in the continuum limit for varying N we obtain the
trajectories for order parameter z = 1

N

∑N
j=1 eiθj shown in

Fig. 3. When N is small, it appears that the dynamics of the
order parameter in the desynchronized group are dominated
by fluctuations, a finite-size effect not observed in the infinite
N limit. As N increases, the magnitude of these fluctuations
decreases and the dynamics approach those of the continuum
limit. For N > 50 the dynamics of the order parameter are
virtually indistinguishable from the results predicted by the
continuum theory.

For parameter values above the Hopf bifurcation shown in
Fig. 2 we obtain the results shown in Fig. 4. For large but finite
N we see similar fluctuations superimposed on the oscillations
of the order parameter shown in the N = ∞ case. However,
such an oscillatory state does not appear to be stable when N

is small, and it is not clear why this is the case. Therefore,
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FIG. 3. Trajectories of the order parameter in the asynchronous
group for various values of N . Parameters: A = 0.1,β = 0.025.

at least for small N , the finite-size effects dominate the
dynamics and the intuition that one can gain from the N = ∞
case is limited.

In order to study these phenomena further it is helpful
to reduce the dimensionality of the system. Watanabe and
Strogatz showed that arrays with N globally coupled identical
phase oscillators possess N − 3 constants of motion, provided
that N > 3, for almost all initial conditions [45]. In other
words, only three governing equations are needed to describe
the dynamics. Pikovsky and Rosenblum [46] extend this
analysis to networks with multiple groups [46]. We therefore
consider their alternative parametrization of the system in
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FIG. 4. Trajectories of the order parameter in the asynchronous
group for various values of N . Parameters: A = 0.4, β = 0.025.

which the dynamics of each group are governed by

dρj

dt
= 1 − ρ2

j

2
Re(Zje

−i�j ), (4)

d�j

dt
= 1 − ρ2

j

2ρj

Im(Zje
−i�j ), (5)

d�j

dt
= ω + 1 + ρ2

j

2ρj

Im(Zje
−i�j ), (6)

for j = 1,2, where

Z1 =−i(1 + A)eiβρ1e
i�1γ1 − i(1 − A)eiβρ2e

i�2γ2

2
, (7)

Z2 =−i(1 + A)eiβρ2e
i�2γ2 − i(1 − A)eiβρ1e

i�1γ1

2
, (8)

where

γj = 1

Nρj

N∑
k=1

ρj + ei(ψ (j )
k −�j )

1 + ρje
i(ψ (j )

k −�j )

and the ψ
(j )
k , with k = 1, . . . N , are the constants associated

with the Watanabe and Strogatz transformation for population
j . In this system, ρj measures the degree of synchrony in group
j (but it is not equivalent to the order parameter in Ref. [17]).
�j and �j are related to the mean phase and spread of the
phases of oscillators, respectively, within group j . Assume we
are in a chimera state where ρ1 = 1. Then γ1 = 1 and

Z1 =−i(1 + A)eiβei�1 − i(1 − A)�eiξ eiβei�2

2
, (9)

Z2 =−i(1 + A)�eiξ eiβei�2 − i(1 − A)eiβei�1

2
, (10)

where

�eiξ := ρ2γ2 = 1

N

N∑
k=1

ρ2e
i�2 + eiψ

(2)
k

ei�2 + ρ2e
iψ

(2)
k

.

Defining � = �1 − �2 we have

dρ2

dt
=

(
1 − ρ2

2

4

)
[(1 + A)� sin (ξ + β)

+ (1 − A) sin (� + β)], (11)

d�

dt
= 1 + A

2

[
− cos β + �

(
1 + ρ2

2

2ρ2

)
cos (ξ + β)

]
+ 1 − A

2

×
[
−� cos (ξ − � + β)

+
(

1 + ρ2
2

2ρ2

)
cos (� + β)

]
, (12)

d�2

dt
= −

(
1 − ρ2

2

4ρ2

)
[(1 + A)� cos (ξ + β)

+(1 − A) cos (� + β)], (13)

where � and ξ are functions of �2 and ρ2. Now for a
uniform distribution of the ψ

(2)
k , i.e., ψ

(2)
k = 2πk/N (which

is the appropriate choice for comparison with dynamics on the
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Ott-Antonsen manifold in the N → ∞ case), Pikovsky and
Rosenblum [46] showed that

γ2 = 1 +
(
1 − ρ2

2

)
(−ρ2e

−i�2 )N

1 − (−ρ2e−i�2 )N
.

As N → ∞, we have γ2 → 1,ξ → 0,� → ρ2 and (11)
and (12) decouple from (13), resulting in Eqs. (12) from
Ref. [17] (after a redefinition of parameters). For finite N the
equations are coupled. Simulating (11)–(13) with appropriate
initial conditions for varying N , we obtain similar results to
those in Figs. 3 and 4 (results not shown), although, as noted
above, ρ2 does not correspond exactly to the magnitude of the
order parameter plotted there. In all of these chimera states
observed, �2 decreases monotonically.

C. Dynamics and bifurcations for two groups
of N = 4 phase oscillators

We now consider the case N = 4 in more detail. To
understand the dynamics we place a Poincaré section, �, in
the flow at � mod 2π = π and record the values of ρ and �

as � decreases through �. We drop subscripts for notational
convenience and seek chimera states corresponding to periodic
solutions of (11)–(13). These correspond to fixed points of the
first return map for �. Following this fixed point as A is
varied and β = 0.1, we use numerical continuation to obtain
the results shown in Fig. 5.

As A is increased from zero a stable and unstable chimera
are created in a saddle-node bifurcation. Increasing A further
results in the stable chimera becoming unstable via a Hopf
bifurcation. Integrating (11)–(13) for values of A above the
Hopf bifurcation we obtain the results shown in Fig. 6. This
strongly suggests that the Hopf bifurcation is supercritical and
that the stable solution created at this bifurcation is destroyed
in a global bifurcation as A is increased even further. This
sequence of bifurcations is remarkably similar to the one
observed in the infinite N limit, and, following the saddle-node
and Hopf bifurcations shown in Fig. 5, we obtain Fig. 7, which
should be compared with Fig. 2.

Investigations for larger N (results not shown) suggest that
as N → ∞ the curves of local bifurcations in Fig. 7 smoothly
deform into the corresponding curves in Fig. 2. However, the
stability of solutions indicated in Fig. 5 is with respect to
perturbations of just the variables in (11)–(13), not to those
in the original system (2) and (3). Simulations of (2) and (3)
for N = 4 (again, not shown) suggest that chimera solutions
shown as stable in Fig. 5 do correspond to stable chimera states
in (2) and (3).

D. Dynamics and bifurcations for two groups
of N = 3 phase oscillators

When N � 3, the Watanabe-Strogatz ansatz used above no
longer applies. Instead, we consider the original system (2)
and (3). In a chimera state, one group is completely synchro-
nized while the other is not, so, without loss of generality, we
look for solutions in which the second group is synchronized,
i.e., φi = φ for i = 1, . . . N and consider the phase differences
ψi = θi − φ. In this rotating frame of reference, the dynamics
of the desynchronized cluster decouple from the synchronized
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FIG. 5. Poincaré section � = π for Eqs. (11)–(13). Top: The
value of ρ (positive) and � (negative). Bottom: Period of periodic
orbits. (Further continuation of the higher-period branch was not
possible for numerical reasons.) Solid: Stable; dashed: unstable.
Parameters: β = 0.1,N = 4.
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FIG. 6. Values of ρ and � on the Poincaré section � = π for
A = 0.28 to A = 0.35 (inner to outer) in steps of 0.01. Parameters:
β = 0.1,N = 4.
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FIG. 7. Saddle-node and Hopf bifurcation curves for N = 4. (See
Fig. 5.)

cluster and the phase differences ψi satisfy

dψi

dt
= 1 + A

2

[
cos β − 1

N

N∑
j=1

cos (ψi − ψj − β)

]

+1 − A

2

[
1

N

N∑
j=1

cos (ψj + β) − cos (ψi − β)

]
(14)

for i = 1,2, . . . ,N . Note that, in general, this frame of
reference does not have a constant frequency, because φ

satisfies

dφ

dt
= ω − 1 + A

2
cos β − 1 − A

2N

N∑
j=1

cos(ψj + β). (15)

Nonetheless, for the purpose of investigating the existence of
chimera states, this equation can be ignored (in Appendix A we
derive conditions under which having a synchronized group is
stable).

Setting N = 3 in (14) we find stable chimera states for some
parameter values. In these states, all ψi increase monotonically
in time, and thus we can reduce the dimensionality of the
system by again placing a Poincaré section in the flow at, say,
ψ3 mod 2π = π . The chimera state corresponds to a fixed
point of the dynamics mapping this section to itself under
the dynamics of (14). Following such a fixed point as A is
varied we obtain Fig. 8. As in the N = 4 case, a stable and
unstable chimera are created in a sadle-node bifurcation as A

is increased from zero, and then the stable one loses stability
through a Hopf bifurcation.

Increasing A beyond the Hopf bifurcation and recording
the times between successive crossings of the Poincaré
section ψ3 = π we obtain Fig. 9, which suggests that the
Hopf bifurcation is supercritical. However, the bifurcation
associated with the appearance of the apparent period-5 orbit
and its fate as A is increased further are unclear. Following the
saddle-node and Hopf bifurcations as A and β are varied we
obtain Fig. 10. These curves of local bifurcations qualitatively
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FIG. 8. Poincaré section ψ3 = π . Top: The value of ψ1,ψ2.
Bottom: Period of periodic orbits. (Further continuation of the
higher-period branch was not possible for numerical reasons.) Solid:
Stable; dashed: unstable. Parameters: N = 3,β = 0.1.
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FIG. 9. Times between successive crossings of the Poincaré
section ψ3 = π . Vertical axis: Times between successive crossings
for a family of attractors corresponding to chimeras. Parameters:
N = 3,β = 0.1.
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FIG. 10. Saddle-node and Hopf bifurcation curves for N = 3 (see
Fig. 8).

form the same arrangement as in Figs. 2 and 7, for N = ∞
and N = 4, respectively. As in the N = 4 case, numerical
investigation of the full system (2) and (3) for N = 3 suggests
that the chimera states marked as stable in Fig. 8 do correspond
to stable chimeras in (2) and (3).

III. DYNAMICS FOR TWO GROUPS OF N = 2
PHASE OSCILLATORS

For general identical phase oscillator networks with fewer
than four identical phase oscillators, chimera states in our sense
cannot occur; see, for example, Ref. [38]. The simplest case of
our system (two groups of N = 2 clusters) in which a chimera
state can occur is therefore a network with four oscillators.
For convenience, we rescale time by a factor of (1 + A)/2 and
consider the specific case of Eq. (14) with N = 2:

dψ1

dt
= 1

2
[cos(β) − cos(ψ1 − ψ2 − β)]

+ η(A)

[
1

2
{cos(ψ1 + β) + cos(ψ2 + β)} − cos(ψ1 − β)

]
,

dψ2

dt
= 1

2
[cos(β) − cos(ψ2 − ψ1 − β)]

+ η(A)

[
1

2
{cos(ψ2 + β) + cos(ψ1 + β)} − cos(ψ2 − β)

]
,

(16)

where η(A) = (1 − A)/(1 + A).
Note that Eq. (16) is invariant under symmetries ψ1 →

ψ1 + 2πn and ψ2 → ψ2 + 2πn where n is an integer. It
is also invariant under the symmetry (ψ1,ψ2) → (ψ2,ψ1).
Any solution will either be preserved by these symmetries
or mapped to a new solution by the symmetry. Hence, any
solution above the line ψ1 = ψ2 will have a symmetric solution
below the line as well as translates shifted by 2πn in either
direction.

p1
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p2

p2

p0

pπ

ψ1

ψ2

0 π 2π
0

π

2π

FIG. 11. Schematic of equilibria for Eq. (16). As A increases,
equilibria p1, p2, p′

1, and p′
2 move along the curve (blue dashed)

in the direction of the displayed arrows. Ultimately, both pairs of
equilibria collide and cease to exist in a saddle-node bifurcation.

We use sum and difference coordinates

σ = ψ1 + ψ2

2
, δ = ψ1 − ψ2

2
(17)

to write (16) in the more compact form:

dσ

dt
= sin2 δ cos β − 2η(A) sin σ cos δ sin β

dδ

dt
= − sin δ[sin β cos δ + η(A) sin (β − σ )].

(18)

A. Invariant structures in phase space for N = 2

For N = 2 the system has an integral of the motion when
β = 0,

L(σ,δ) := cos δ − η(A) cos σ. (19)

This can be seen by computing

dL

dt
= sin β[sin2 δ{cos δ + η(A) cos σ }

−2η(A)2 cos δ sin2 σ ] (20)

and observing that for β = 0 we have dL
dt

= 0 [in the case
A = 0 this reduces to the Strogatz-Watanabe constant of the
motion [45] L(ψ1,ψ2) = 2 sin ψ1

2 sin ψ2

2 ].
In addition, the symmetry of interchanging (ψ1,ψ2) means

that the line δ = 0 (which corresponds to ψ1 = ψ2 = σ ) is
invariant for all and A, β. Along this manifold, the flow is
governed by

dσ

dt
= −2η(A) sin σ sin β. (21)

Two fixed points lie on this manifold: p0, for which ψ1 =
ψ2 = 0, representing the fully synchronized solution, and pπ ,
for which ψ1 = ψ2 = π , representing a solution in which
oscillators within each group are synchronized but the two
groups are π out of phase (antiphase) with each other (see
Fig. 11). For 0 � β � π/2, the domain where chimera states
are typically of interest, the fully synchronized solution p0 is
stable while the out-of-phase solution, pπ , is a saddle.
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FIG. 12. Trajectories for Eq. (16) with A = 0.1 and varying β.
Top: For β = 0, all trajectories (blue) remain on level curves of the
invariant L (19). The gray-shaded regions indicate neutrally stable
chimera periodic orbits while the diagonal red line is a line of neutrally
stable fixed points. Bottom: For β = 0.15 fixed points are indicated
by black circles. Trajectories within the gray band are stable chimeras.

Linearizing (18) about the manifold δ = 0 gives

dδ

dt
= −[η(A) sin (β − σ ) + sin β]δ + O(δ2), (22)

and thus this manifold may be repelling for some σ and
attracting for others, depending on the values of A and β. For
parameters of interest, there are also two pairs of fixed points
with ψ1 �= ψ2, one pair, p1 and p′

1, near (0,0) and another pair,
p2 and p′

2, near (π,π ) (see Fig. 11, Appendix B). p1 and p′
1 are

mapped to one another by the operation (ψ1,ψ2) �→ (ψ2,ψ1),
as are p2 and p′

2. For concreteness, we say that p1 and p2 are
above the diagonal, while p′

1 and p′
2 are below. All of these

are unstable. Analysis of the Jacobian at these fixed points
reveals that both p1 and p2 are saddles when A is small. As A

increases, p2 becomes an unstable spiral node. Eventually, at
a critical value of A (see Appendix C) p1 and p2 collide in a
saddle-node bifurcation.

In order to explore the solutions of Eqs. (16), we integrate
the equations for a variety of initial conditions satisfying
0 � ψ1,ψ2 � 2π ; see Fig. 12. For fixed β we observe two
different types of long-term attracting behaviors. When β = 0,
all trajectories remain on level curves of L that either connect
pairs of neutrally stable fixed points or are infinitely long
periodic orbits. For 0 < β � 1, most initial conditions evolve
toward the fully synchronized state (p0). However, there is a set
of initial conditions that give rise to a stable chimera solution

where ψ1 and ψ2 increase indefinitely at an asymptotically
linear rate and for which ψ1(t) �= ψ2(t). In order to understand
this behavior better we now examine the (ψ1,ψ2) phase plane
as A is varied.

B. Phase-plane analysis for N = 2

Figure 13 displays the equilibrium points and some of the
relevant manifolds of p1 and p′

1 and the direction of flow for
fixed β = 0.15 and six different values of A. This figure reveals
a variety of different scenarios. When A is small, all trajectories
converge to p0 (the fully synchronous state). As A increases, a
global bifurcation occurs [see Fig. 13(b)]. The nearly vertical
unstable manifold of p1 (magenta) merges with part of the
stable manifold of p′

1 (blue), where by “p′
1” we mean, in this

case, p′
1 shifted vertically by 2π . This results in the creation of

a periodic orbit with an infinite period. Beyond this bifurcation,
a narrow “channel” bounded by the unstable manifolds of p1

and p′
1 forms. Initial conditions within this channel (including

those along the magenta unstable manifolds) cannot approach
any fixed point without crossing one of these stable manifolds
[see Fig. 13(c)], therefore, the lifetimes of these trajectories
are infinitely long. Over time, they approach a periodic orbit
that represents a chimera state. As A continues to increase,
eventually the nearly vertical unstable manifold of p1 merges
with a stable manifold of the image of p1 under the action
(ψ1,ψ2) �→ (ψ1 + 2π,ψ2 + 2π ) [see Fig. 13(d)]. This causes a
second global bifurcation in which the two manifolds exchange
orientations [see Fig. 13(e)]. Here the stable manifolds of p1

and p′
1 can be traced backwards indefinitely. Thus there are

arbitrarily long transients in the system (which we refer to
as “backwards chimera states”), but all trajectories eventually
approach p0. The lifetimes of these transients are displayed in
Fig. 14. Eventually, these “channels” completely vanish when
p1 and p2 disappear as p1 and p2 approach each other [see
Fig. 13(f)] and undergo a saddle-node bifurcation.

C. Bifurcations for N = 2

The bifurcations described above appear for a range of β

values. As is the case for N = 3, the parameter values at which
these bifurcations occur can be computed numerically by
placing a Poincaré section in the flow, say, at ψ1 mod 2π = π .
Following fixed points of the map from this section to itself
we obtain the results in Fig. 15. We see that the bifurcations
observed when N = 2 differ from those found above for N =
3,4 and in Ref. [17] for N → ∞. Stable periodic orbits in the
flow first appear at the global bifurcation involving the unstable
manifold of p1, as shown in Fig. 13(b). As A increases, a
supercritical pitchfork bifurcation of this orbit occurs and the
stable periodic orbit splits into a pair of stable orbits and
an unstable orbit. Eventually, both of the stable chimera
states disappear when the second global bifuration occurs, as
shown in Fig. 13(d). The unstable periodic orbit persists for
larger A.

Following the bifurcations shown in Fig. 15 we obtain
Fig. 16. Although the bifurcations involved in creating and
destroying chimera states differ from those for the N > 2
cases, surprisingly, two types of stable chimeras still exist
in a “wedge” in parameter space with one corner at the
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FIG. 13. Phase plots for Eq. (16). Each panel contains a phase plot for β = 0.15 and for various values of A (a) A = 0.03, (b) A = 0.0662,
(c) A = 0.1, (d) A = 0.194, (e) A = 0.25, and (f) A = 0.71. Black arrows indicate the direction of flow in the plane. Fixed points are marked
with black circles. Curves indicate selected stable (blue dashed) and unstable (magenta solid) manifolds of the saddle points.

origin in (A,β) space. Although only the results of numerical
calculations have been shown so far, in Appendix D we
present analytical calculations of the left boundaries of
the blue and green curves in Fig. 16, (A0,0) and (A1,0),
respectively.

IV. CHIMERAS ON A FINITE RING

The fact that chimeras are stable in these small finite net-
works contrasts with Wolfrum and Omel’chenko’s findings in
Ref. [41]. Their numerical experiments showed that chimeras
on finite rings were chaotic transients with lifetimes that

ψ1

ψ2

−π 0 π 2π 3π
−π

0

π

2π

3π

1

2

3

4

5

6

7

8

9

10

11+

ψ1

ψ2

−π 0 −π
−π

0

π

1

2

3

4

5

6

7

8

9

10

11+

FIG. 14. Foliation of the phase plane. Left and right panels depict the phase plane for A = 0.25 and β = 0.15. The white region exhibits
no oscillation. The colored regions contain chimera states with finite lifetimes. The number of cycles (increasing from the outermost regions
to the innermost region) before a fixed point is reached is indicated by the color.
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FIG. 15. Poincaré section ψ1 = π . Top: The value of ψ2. Bottom:
Period of periodic orbits. (Continuation to higher periods was not
possible for numerical reasons.) Solid: Stable; dashed: unstable.
Parameters: β = 0.1.

increased exponentially with the system size. This difference
can be attributed in part to topological differences in the
underlying network. In our system, network symmetries lead
to a natural partitioning into two clusters. Desynchronization
of individual clusters without preventing synchrony in other
clusters is known to occur in a broad class of oscillator
networks [47]. This isolated desynchronization can explain
why one group of oscillators is able to drift while the other
remains phase locked. Furthermore, the state in which one of
the two groups is synchronized is an invariant manifold that
is stable under many conditions (see Appendix A). This is
due to the fact that all oscillators within a group possess the
same links and therefore receive the same input. It also leads
all oscillators within a group to maintain the same average
frequency.

In contrast, on a ring of oscillators, there is a single cluster
of oscillators and synchrony in subsets of oscillators from
this cluster does not constitute an invariant manifold (see
Appendix E). In the absence of clustering, on a ring the
boundaries of the drifting and phase-locked regions are not
fixed and fluctuations in the local degree of synchrony (a
finite-size effect analogous to the fluctuations in Fig. 3) can
cause oscillators near the boundary of the synchronized region
to change frequencies and lose or regain synchrony with their
neighbors. This leads to irregular motion and growth and

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

β

A

FIG. 16. Bifurcations for the N = 2 case. Black (dotted): Saddle-
node of fixed points; blue (dash-dotted): pitchfork of chimeras; red
(dashed): heteroclinic connection between p1 and p′

1 (with one
variable increased by 2π ); green (solid): homoclinic connection
between p1 and p1 (with both variables increased by 2π ). Stable
chimeras exist in the shaded regions bounded by the green and red
curves, and the line β = 0. The blue circle (A0 ≈ 0.145898) and blue
square (A1 ≈ 0.285714) with β = 0 indicate analytical predictions
for the bifurcation points.

shrinkage of the coherent and incoherent regions and can
ultimately destabilize the chimera [48].

There is evidence that the finding that chimeras on a ring are
chaotic transients for small values of N is not universal. Recent
findings suggest that the introduction of a second harmonic to
the coupling function can lead to stable chimeras on a ring as
well [38,49].

V. DISCUSSION AND CONCLUSION

Chimera states have been observed in a variety of networks
[12,14–16,18–23,25,26, 28–31] but perhaps the simplest net-
work in which they are seen is one consisting of two groups
of N oscillators each, with all-to-all coupling within and
between groups [17,24,27,32,46]. Most analysis of chimera
states has been in the continuum limit—where N is taken
to be infinite—but here we have investigated the opposite
limit, seeing how few oscillators were needed in a network
in order to observe what could be referred to as a chimera.
Surprisingly, we found that chimera states exist and are stable
even for N = 2 and that the bifurcation scenarios for N > 2
are qualitatively the same as for N = ∞.

For N > 3 we used the Watanabe-Strogatz transformation
and the prior calculations of Pikovsky and Rosenblum [46]
to derive the three ODEs (11)–(13) which describe the
asynchronous group of oscillators. For N = 4 we found a
bifurcation scenario which was qualitatively the same as
that for the N = ∞ case. For N = 3 we studied the three
equations (14) for the phases differences between the two
groups and also found a bifurcation scenario which was
qualitatively the same as that for the N = ∞ case. The N = 2
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case is described by two ODEs (16) and the bifurcation
scenario corresponding to this system idiffers considerably
from all other cases, as it involves global bifurcations and a
pitchfork bifurcation.

Note that the chimeras discussed here are “weak chimeras”
in the sense of Ref. [38]. In that paper, for the case N = 2
and a set of phase oscillators that reduces to the problem
considered here for a special choice of parameters, attracting
weak chimeras are found even in the limit ν → 0 for fixed μ.

For chimera states to be observable they must be robust
with respect to hetereogeneity. Previous investigations have
shown that they are robust with respect to nonidentical
frequencies [24,25] (in the continuum limit) and removal
of connections within a large but finite network [27]. The
derivation of many of the equations in this paper has relied on
the oscillators having identical intrinsic frequencies, but we
have verified numerically that the stable chimera states found
here do persist when the intrinsic frequencies are randomly
chosen from distributions with sufficiently small variances for
all N � 2 (results not shown).

Another question that arises is whether these results can be
extended to networks of oscillators which are not described
by just a phase variable. Clearly, chimera states are possible
in these systems, as some of the first observations of chimera
states were in networks of such oscillators [12,15] (also see
Refs. [50–53]). However, all of these studies considered large
(or infinite) networks, and there is an open question as to
whether the chimera states found here in small networks of
phase oscillators exist in small networks of more general
oscillators.

This work demonstrates that it is not necessary to study
large systems to observe stable chimeras. We hope that
this observation inspires further analytical investigations of
chimeras in small networks, particularly those with nonlocal
coupling, in addition to further experiments exploring
chimeras in real-world systems.

APPENDIX A: STABILITY OF THE
SYNCHRONIZED GROUP

In order to show that the manifold in which one group is
synchronized is stable, we begin by considering considering
Eqs. (2) and (3). Moving into a rotating frame of reference,
we let �i = φi − φ and ψi = θi − φ, where

dφ

dt
= ω − 1 + A

2
cos β − 1 − A

2N

N∑
j=1

cos(ψj + β).

After rescaling time by a factor of (1 + A)/2 and defining
η(A) = (1 − A)/(1 + A), we obtain

dψi

dt
=

⎡
⎣cos β − 1

N

N∑
j=1

cos(ψi − ψj − β)

⎤
⎦ + η(A)

N

×
⎡
⎣ N∑

j=1

cos(ψj + β) −
N∑

j=1

cos(ψi − �j − β)

⎤
⎦,

(A1)

d�i

dt
=

⎡
⎣cos β − 1

N

N∑
j=1

cos(�i − �j − β)

⎤
⎦ + η(A)

N

×
⎡
⎣ N∑

j=1

cos(ψj + β) −
N∑

j=1

cos(�i − ψj − β)

⎤
⎦.

(A2)

Note that �i = 0 for all i is an invariant manifold in Eq. (A2).
We now derive conditions on ψj ,A,β such that this state is
stable. To achieve this, we treat ψj as external forcing functions
and compute the Jacobian of Eq. (A2). It is straightforward
to show that along the synchronized manifold (�i = 0) the
Jacobian satisfies

Jii = −
(

N − 1

N

)
sin(β) −

[
η(A)

N

] N∑
j=1

sin(ψj + β),

Jij = 1

N
sin(β), j �= i.

For compactness, we define Z = 1
N

∑N
j=1 sin(ψj + β). In

matrix form, the Jacobian can be expressed as

J = − 1

N
sin(β)LN − η(A)ZIN,

where IN is the N × N identity matrix and

LN =

⎛
⎜⎜⎜⎜⎝

N − 1 −1 . . . −1

−1 N − 1
. . .

...
...

. . .
. . . −1

−1 . . . −1 N − 1

⎞
⎟⎟⎟⎟⎠

is the Laplacian of a complete graph with N vertices. Making
use of the fact that LN has a single zero eigenvalue and
a repeated eigenvalue N (with multiplicity N − 1), it is
straightforward to show that the eigenvalues of J are as
follows:

λ1 = −η(A)Z, λ2 = − sin(β) − η(A)Z.

The eigenvector corresponding to λ1 is 1 representing a
uniform phase shift along the synchronized manifold. Thus
the stability transverse to the manifold is determined by λ2.
Rearranging, we observe that λ2 < 0 is equivalent to

Z > − sin β

η(A)
.

Z depends on the phases of the oscillators in the desynchro-
nized group and its value cannot be determined a priori.
However, it is clearly bounded by −1 � Z � 1. So the
synchronized manifold is always stable for η(A) < sin β or

A >
1 − sin β

1 + sin β
.

In practice, however, |Z| remains close to 0 in a chimera state,
so the synchronous group is stable to a variety of perturbations
provided sin β

η(A) is not too small.
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APPENDIX B: ASYMPTOTIC EXPRESSIONS FOR
FIXED POINTS p1 AND p2

When A � 1, the coordinates of fixed points p1 and p2 can
be approximated as follows.

Fixed point p1 scales like

ψ1 ∼ sin(β) cos(β)
[
3A + 5

4 (3 sin2(β) + 1)A2

− 1
8 (3 sin4(β) − 38 sin2(β) − 21)A3

]
ψ2 ∼ ψ0

2 + sin(β) cos(β)
[
A + 1

4 (sin2(β) + 11)A2

− 1
24 (55 sin4(β) − 142 sin2(β) − 33)A3

]
,

where ψ0
2 satisfies the equation

tan(β) = 1 − cos
(
ψ0

2

)
2 sin

(
ψ0

2

) .

Similarly, fixed point p2 scales like

ψ1 ∼ π − 2 sin(β)A
1
2 − 2 sin(β) cos(β)A

− [
1
3 sin(β)3 − sin(β)

]
A

3
2

ψ2 ∼ π + 2 sin(β)A
1
2 − 2 sin(β) cos(β)A

+ [
1
3 sin(β)3 − sin(β)

]
A

3
2 .

These expressions are useful for identifying initial conditions
that lead to chimera states.

APPENDIX C: SADDLE-NODE BIFURCATION
CURVE FOR N = 2

In order compute the saddle-node bifurcation curve shown
in Fig. 16, we now consider the Jacobian of Eq. (16) near p1.
At the bifurcation, the determinant be must equal to 0, so in
theory one can find a single equation in A and β corresponding
to the saddle-node curve. Unfortunately, thus far we have been
unable to find a closed-form solution for the fixed points.
So, instead, we look for a perturbative expression when A ∼ 1
and β � 1. We assume that the solution satisfies the following
where ε � 1 is a small parameter:

A = 1 − ε

β ∼ εβ1 + ε2β2 + ε3β3 + ε4β4

ψi ∼ ψi0 + εψi1 + ε2ψi2 + ε3ψi3 + ε4ψi4 .

Substituting this into the determinant of the Jacobian, expand-
ing in ε = (1 − A), we obtain the solution curve

β ∼ 125
96 − 47

16A + 11
4 A2 − 67

48A3 + 9
32A4,

which agrees with the numerical results displayed in Fig. 16
as A → 1.

APPENDIX D: BIFURCATIONS OF CHIMERA
FOR N = 2 NEAR β = 0

The solutions and bifurcation curves described above for
Eq. (16) can be computed analytically in the limit 0 < β � 1.
We compute using Eq. (18) in the sum and the difference

coordinates (17) and exploit the fact that L defined in (19) is,
by (20), close to an invariant for this limit.

In particular, for β = 0 the level curve L = L0 is invariant
and we can eliminate δ

cos δ = η(A) cos σ + L0,

sin2 δ = 1 − (η(A) cos σ + L0)2,
(D1)

where η(A) = (1 − A)/(1 + A), meaning that

d

dt
σ = 1 − (η(A) cos σ + L0)2 (D2)

and

δ = �(A,σ,L0) := arccos(η(A) cos σ + L0).

All trajectories with |L0| < 1 − η(A) will wind around σ but
not δ; they are “weak chimeras” and are periodic orbits with a
period T (L0) that can be found in integral form.

Now consider 0 < β � 1 and note that

dL

dt
= βG(σ,δ) + O(β2), (D3)

where

G(σ,δ) = sin2 δ(cos δ + η(A) cos σ ) − 2η(A)2 cos δ sin2 σ.

Hence the change in L over one period T (L0) on L0 is
determined to lowest order in β by

�(L0) :=
∫ T (L0)

t=0
G(σ,�(A,σ,L0))dt (D4)

in the sense that L{t + T [L(t)]} = L(t) + β�[L(t)] + O(β2)
for fixed A and small β for any region of L such that T (L) is
bounded. If there is a (weak chimera) periodic orbit within β

of L = L0, then �(L0) = 0. The stability of a (weak chimera)
periodic solution L0 is determined by a Floquet multiplier
1 + βM(L0) + O(β2), where

M(L0) := d�

dL
(L0),

so we have (for 0 < β � 1) linear stability if M(L0) < 0 and
linear instability if M(L0) > 0. One can show that

�(0) =
∫ 2π

σ=0

2η(A)(1 − η(A)2) cos σ

1 − η(A)2 cos2 σ
dσ = 0

[the integrand has symmetry I (σ + π ) = −I (σ )], meaning
there is a periodic solution close to the curve L0 = 0 that is a
weak chimera for 0 < A. We compute

M(0) = 2π

(
3
√

A − 1 − A√
A

)
,

which has a unique zero for 0 < A = A0 where

A0 := 7 − 3
√

5

2
≈ 0.1458980337. (D5)

For 0 < β � 1, if 0 < A < A0, then M(0) < 0 and the
periodic orbit is stable while for A > A0 it becomes unstable
at a pitchfork of (weak chimera) limit cycles.

The homoclinic connection between p1 and p1 (with both
variables shifted by 2π ) for 0 < β � 1 can similarly be found
by finding a value of A such that the chimera periodic orbit is at
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the level L0 = 2A/(1 + A) corresponding to the heteroclinic
orbit of the integrable system at β = 0. On this orbit we can
similarly calculate

�

(
2A

1 + A

)
= 2π

2A
√

2 + 2A − 6A
√

A√
A + A2

and so in the limit 0 < β � 1 the bifurcation is at �[2A/(1 +
A)] = 0, meaning that

A1 = 2

7
≈ 0.285714. (D6)

The heteroclinic connection between p1 and p′
1 (with one

variable increased by 2π ) is at A = 0 in the limit 0 < β � 1,
which is where the L0 = 0 chimera solution has unbounded
period. The values of A0 and A1 are shown in Fig. 16.

APPENDIX E: SYNCHRONIZED INVARIANTS FOR
CHIMERAS ON A FINITE RING

To see why the chimeras that are observed in the continuum
limit do not appear to be stable on a finite ring, we examine
Eq. (1) which is the standard Kuramoto-Sakaguchi model on
a ring with “top-hat” coupling studied in Ref. [41]. Here R

is the coupling radius and all indices are taken modulo N ,
where N is the number of oscillators in the system. We now
derive a necessary condition for the state in which a set of
consecutive oscillators are synchronized to be invariant, a
necessary condition for the existence of a stationary phase-
and frequency-locked chimera.

Suppose that the state with � consecutive phase and
frequency-locked oscillators is invariant. Let S denote the set
of locked (synchronized) oscillators and without loss of gener-
ality, and suppose that oscillators with indices 0,1, . . . ,� − 1
are in S. By assumption, θk = θ and θ̇k = ω − f (t), where

f (t) = 1

2R

k+R∑
j=k−R

sin(θk − θj + α)

is independent of k for k ∈ L. In other words,

k+R∑
j=k−R

sin(θ − θj + α) =
n+R∑

j=n−R

sin(θ − θj + α)

for all n,k ∈ S. In particular, suppose n and k are consecutive
oscillators in the locked region so n = k − 1. In this case, all
but one of the terms in the sums cancel and the relationship

simplifies to

sin(θ − θk+R + α) = sin(θ − θk−1−R + α).

This imposes constraints on θk+R and θk−1−R . Either

θk+R = θk−1−R, (E1)

θ̇k+R = θ̇k−1−R, (E2)

or

θk+R = π + 2θ + 2α − θk−1−R, (E3)

θ̇k+R = 2θ̇ − θ̇k−1−R, (E4)

for all k ∈ S except k = 0. In other words, for the state with
� consecutive synchronized oscillators to be invariant there
must be at least � − 1 pairs of synchronized oscillators with
indices separated by 2R + 1. This partitions the system into
groups of oscillators that must remain synchronized to preserve
the synchrony of S. When these groups contain oscillators
from the drifting region, Eq. (E2) [or (E4)] imposes additional
constraints on the phases and phase velocities of nearby
“drifiting” oscillators.

Let us take, for example, N = 4. In this case R = 1 is the
only example of nonlocal coupling and � = 2 would be the
only possible chimera (since a minimum of two synchronized
and two desynchronized oscillators are needed for a chimera).
Thus a chimera, if it existed, would consist of a state in which
oscillators 0 and 1 were locked and oscillators 2 and 3 were
drifting. However, application of (E1) and (E3) with k = 1
yields the condition that θ2 = θ3 or θ2 = π + 2θ + 2α − θ3.
The first case would not be a chimera since it is made up of
two synchronized groups. The second case is not an invariant
because the phase relationship can only be maintained if θ̇2 =
2θ̇ − θ̇3 and, using (1), it is straightforward to show that this
does not hold.

This method of searching for nontrivial invariants cannot
rule out desynchronized states entirely. For example, N = 5,
R = 1 the state with phases θ0 = θ1 and θ2 = θ4 and arbitrary
θ3 is invariant and with N = 6, R = 1, or R = 2, the state with
phases θ0 = θ1, θ2 = θ5, and θ3 = θ4 is invariant. However,
because the “drifting” regions consist of synchronized clusters,
these states are not chimeras in the traditional sense. Moreover,
numerical exploration of these solutions suggests that although
they are invariant, initial conditions near this manifold and even
initial conditions along this manifold converge to a simpler
invariant: the fully synchronized state.
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I. Omelchenko, and E. Schöll, Experimental observation
of chimeras in coupled-map lattices, Nat. Phys. 8, 658
(2012).

[30] M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-
cluster states in populations of coupled chemical oscillators, Nat.
Phys. 8, 662 (2012).

[31] S. Nkomo, M. Tinsley, and K. Showalter, Chimera States in
Populations of Nonlocally Coupled Chemical Oscillators, Phys.
Rev. Lett. 110, 244102 (2013).

[32] E. Andreas Martens, S. Thutupalli, A. Fourrire, and O. Hal-
latschek, Chimera states in mechanical oscillator networks,
Proc. Natl. Acad. Sci. USA 110, 10563 (2013).

[33] L. Schmidt, K. Schönleber, K. Krischer, and V. Garcı́a-Morales,
Coexistence of synchrony and incoherence in oscillatory media
under nonlinear global coupling, Chaos 24, 013102 (2014).

[34] C. R. Laing, Fronts and bumps in spatially extended kuramoto
networks, Physica D 240, 1960 (2011).

[35] K. Wimmer, D. Q. Nykamp, C. Constantinidis, and A. Compte,
Bump attractor dynamics in prefrontal cortex explains behav-
ioral precision in spatial working memory, Nat. Neurosci. 17,
431 (2014).

[36] E. Tognoli and J. A. Scott Kelso, The metastable brain, Neuron
81, 35 (2014).

[37] C. R. Laing and C. C. Chow, Stationary bumps in networks of
spiking neurons, Neur. Comput. 13, 1473 (2001).

[38] P. Ashwin and O. Burylko, Weak chimeras in minimal networks
of coupled phase oscillators, Chaos 25, 013106 (2015).

[39] M. Wolfrum, O. Omel’chenko, and J. Sieber, Regular and
irregular patterns of self-localized excitation in arrays of coupled
phase oscillators, Chaos 25, 053113 (2015).

[40] O. E. Omel’chenko, Coherence–incoherence patterns in a ring
of non-locally coupled phase oscillators, Nonlinearity 26, 2469
(2013).

[41] M. Wolfrum and O. E. Omel’chenko, Chimera states are chaotic
transients, Phys. Rev. E 84, 015201 (2011).
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